
 

 

Master's Thesis 

Web-Based Bytecode Interpreter Visualization 

 

Student: Tobias Herber, BSc 

Advisor: Dipl.-Ing. Dr. Markus Weninger, BSc 

Start date: September 2024 

 

The "Compiler Construction" course at Johannes Kepler University Linz, Austria, presents 
students with the challenging task of developing a complete compiler for MicroJava, a simplified 
variant of Java. This comprehensive project encompasses various compiler phases, including 
scanning, parsing, symbol table management, and bytecode generation. While MicroJava's 
reduced feature set (lacking inheritance and supporting only a limited set of built-in types) 
simplifies the task somewhat, students still face significant complexity in understanding and 
implementing each compiler component. 
 
To support student learning and enhance their grasp of compiler theory and practice, the course 
has already incorporated interactive visualizations for the scanner, parser, and operand 
generation during code generation. These tools have proven invaluable in helping students 
understand how their compiler implementations process source code through different phases. 
However, a critical gap remains in visualizing the final stage of compilation: bytecode 
interpretation. 
 
The bytecode interpreter, a stack-based virtual machine, interacts with four distinct memory 
regions: the data section for global and static data, the heap for objects and arrays, the function 
stack for local variables, and the expression stack for temporary data storage during 
computations. The intricate dance of bytecode instructions across these memory areas—loading 
values, performing operations, and storing results—often remains opaque to students, making 
it challenging to identify and rectify errors in their code generation phase. 
 
Goal: 
The primary objective of this master's thesis is to develop a web-based visualization tool that 
illuminates the inner workings of the MicroJava bytecode interpreter. This interactive 
visualization will serve as a powerful educational aid, allowing students to observe and 
understand the step-by-step execution of bytecode instructions and their effects on the 
interpreter's memory regions. 
 
Key features of the visualization tool should include: 
 
1. Step-through functionality: Enable students to navigate through bytecode instructions one at 
a time, providing a granular view of the interpretation process. 
 
2. Animated data flow: Visually represent the movement of data between memory regions, using 
color-coding and animation to illustrate how each instruction affects the interpreter's state. 
 
3. Error highlighting: When discrepancies arise between a student's generated bytecode and the 
expected output, the tool should clearly indicate these differences and demonstrate how the 
correct bytecode would behave. 

 
Dipl.-Ing. Dr. Markus Weninger, Bsc 

Institute for System Software 

T +43-732-2468-4361 

markus.weninger@jku.at 



 

 

 
4. Instructor mode: Design the tool to be suitable for in-class demonstrations, allowing lecturers 
to replace traditional slide-based teaching with dynamic, interactive examples. 
 
The development process should involve a thorough evaluation of existing teaching materials, 
particularly how interpreter internals and bytecode instructions are currently visualized in course 
slides. This analysis will inform the design of the new tool, ensuring it aligns with and enhances 
the current curriculum. 
 
By creating this visualization tool, the thesis aims to bridge the gap between theoretical 
understanding and practical implementation in compiler construction. It will empower students 
to debug their code more effectively, deepen their comprehension of bytecode interpretation, 
and ultimately enhance their overall learning experience in the course. 
 
The student undertaking this thesis will need to demonstrate proficiency in web development 
technologies, a strong understanding of compiler theory and bytecode interpretation, and the 
ability to create intuitive, educational user interfaces. 
 

Modalities: 

The progress of the project should be discussed at least every three to four weeks with the advisor. A time schedule 
and a milestone plan must be set up within the first two weeks and discussed with the advisor(s). It should be 
continuously refined and monitored to make sure that the thesis will be completed in time. The final version of the 
thesis is expected to be finished before 31.08.2025. 


